在使用python做机器学习时候,为了制作训练数据(training samples)和测试数据(testing samples),常使用sklearn里面的sklearn.model_selection.train_test_split模块。

train_test_split的使用方法:

语法:sklearn.model_selection.train_test_split(arrays, *options)

train_test_split里面常用的因数(arguments)介绍:

  • arrays:分割对象同样长度的列表或者numpy arrays,矩阵。
  • test_size:两种指定方法。1:指定小数。小数范围在0.0~0.1之间,它代表test集占据的比例。2:指定整数。整数的大小必须在这个数据集个数范围内,总不能指定一个数超出了数据集的个数范围吧。要是test_size在没有指定的场合,可以通过train_size来指定。(两个是对应关系)。如果train_size也没有指定,那么默认值是0.25.
  • train_size:和test_size相似。
  • random_state:这是将分割的training和testing集合打乱的个数设定。如果不指定的话,也可以通过numpy.random来设定随机数。
  • shuffle和straify不常用。straify就是将数据分层。

train_test_split 用法举例:

>>> import pandas as pd
>>> from sklearn.model_selection import train_test_split
>>>
>>> namelist = pd.DataFrame({
... "name" : ["Suzuki", "Tanaka", "Yamada", "Watanabe", "Yamamoto",
... "Okada", "Ueda", "Inoue", "Hayashi", "Sato",
... "Hirayama", "Shimada"],
... "age": [30, 40, 55, 29, 41, 28, 42, 24, 33, 39, 49, 53],
... "department": ["HR", "Legal", "IT", "HR", "HR", "IT",
... "Legal", "Legal", "IT", "HR", "Legal", "Legal"],
... "attendance": [1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1]
... })
>>> print(namelist)
age attendance department name
0 30 1 HR Suzuki
1 40 1 Legal Tanaka
2 55 1 IT Yamada
3 29 0 HR Watanabe
4 41 1 HR Yamamoto
5 28 1 IT Okada
6 42 1 Legal Ueda
7 24 0 Legal Inoue
8 33 0 IT Hayashi
9 39 1 HR Sato
10 49 1 Legal Hirayama
11 53 1 Legal Shimada

将testing数据指定为0.3(test_size=0.3),从而将testing和training 集合分开。

>>> namelist_train, namelist_test = train_test_split(namelist, test_size=0.3)
>>> print(namelist_train)
age attendance department name
10 49 1 Legal Hirayama
1 40 1 Legal Tanaka
7 24 0 Legal Inoue
2 55 1 IT Yamada
4 41 1 HR Yamamoto
3 29 0 HR Watanabe
9 39 1 HR Sato
6 42 1 Legal Ueda
>>> print(namelist_test)
age attendance department name
0 30 1 HR Suzuki
8 33 0 IT Hayashi
11 53 1 Legal Shimada
5 28 1 IT Okada

接下来是将testing数据指定为具体数目。test_size=5。

>>> namelist_train, namelist_test = train_test_split(namelist, test_size=5)
>>> print(namelist_train)
age attendance department name
3 29 0 HR Watanabe
4 41 1 HR Yamamoto
6 42 1 Legal Ueda
1 40 1 Legal Tanaka
9 39 1 HR Sato
8 33 0 IT Hayashi
7 24 0 Legal Inoue
>>> print(namelist_test)
age attendance department name
2 55 1 IT Yamada
10 49 1 Legal Hirayama
5 28 1 IT Okada
11 53 1 Legal Shimada
0 30 1 HR Suzuki

接下来将training data 指定为0.5(training_size=0.5)

>>> namelist_train, namelist_test = train_test_split(namelist, test_size=None, train_size=0.5)
>>> print(namelist_train)
age attendance department name
5 28 1 IT Okada
2 55 1 IT Yamada
3 29 0 HR Watanabe
4 41 1 HR Yamamoto
10 49 1 Legal Hirayama
0 30 1 HR Suzuki
>>> print(namelist_test)
age attendance department name
6 42 1 Legal Ueda
7 24 0 Legal Inoue
9 39 1 HR Sato
11 53 1 Legal Shimada
8 33 0 IT Hayashi
1 40 1 Legal Tanaka

接下来是是shuffle和straify功能。

>>> namelist_train, namelist_test = train_test_split(namelist, shuffle=False)
>>> print(namelist_train)
age attendance department name
0 30 1 HR Suzuki
1 40 1 Legal Tanaka
2 55 1 IT Yamada
3 29 0 HR Watanabe
4 41 1 HR Yamamoto
5 28 1 IT Okada
6 42 1 Legal Ueda
7 24 0 Legal Inoue
8 33 0 IT Hayashi
>>> print(namelist_test)
age attendance department name
9 39 1 HR Sato
10 49 1 Legal Hirayama
11 53 1 Legal Shimada

summary

  • train_test_split(arrays,options) arrays确定需要分割的对象,数据集。
  • train_test_split(arrays,options) options确定需要分割的方法。例如比例,随机性,分层等。